Convergence of Iterations
نویسنده
چکیده
Convergence is a central problem in both computer science and in population biology. Will a program terminate? Will a population go to an equilibrium? In general these questions are quite difficult – even unsolvable. In this paper we will concentrate on very simple iterations of the form
منابع مشابه
Strong Convergence of the Iterations of Quasi $phi$-nonexpansive Mappings and its Applications in Banach Spaces
In this paper, we study the iterations of quasi $phi$-nonexpansive mappings and its applications in Banach spaces. At the first, we prove strong convergence of the sequence generated by the hybrid proximal point method to a common fixed point of a family of quasi $phi$-nonexpansive mappings. Then, we give applications of our main results in equilibrium problems.
متن کاملOn the Ishikawa iteration process in CAT(0) spaces
In this paper, several $Delta$ and strong convergence theorems are established for the Ishikawa iterations for nonexpansive mappings in the framework of CAT(0) spaces. Our results extend and improve the corresponding results
متن کاملDouble Sequence Iterations for Strongly Contractive Mapping in Modular Space
In this paper, we consider double sequence iteration processes for strongly $rho$-contractive mapping in modular space. It is proved, these sequences, convergence strongly to a fixed point of the strongly $rho$-contractive mapping.
متن کاملModified frame algorithm and its convergence acceleration by Chebyshev method
The aim of this paper is to improve the convergence rate of frame algorithm based on Richardson iteration and Chebyshev methods. Based on Richardson iteration method, we first square the existing convergence rate of frame algorithm which in turn the number of iterations would be bisected and increased speed of convergence is achieved. Afterward, by using Chebyshev polynomials, we improve this s...
متن کاملNew three-step iteration process and fixed point approximation in Banach spaces
In this paper we propose a new iteration process, called the $K^{ast }$ iteration process, for approximation of fixed points. We show that our iteration process is faster than the existing well-known iteration processes using numerical examples. Stability of the $K^{ast}$ iteration process is also discussed. Finally we prove some weak and strong convergence theorems for Suzuki ge...
متن کاملA STABLE COUPLED NEWTON'S ITERATION FOR THE MATRIX INVERSE $P$-TH ROOT
The computation of the inverse roots of matrices arises in evaluating non-symmetriceigenvalue problems, solving nonlinear matrix equations, computing some matrixfunctions, control theory and several other areas of applications. It is possible toapproximate the matrix inverse pth roots by exploiting a specialized version of New-ton's method, but previous researchers have mentioned that some iter...
متن کامل